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Abstract

Over the past years, genome‐wide association studies (GWAS) have generated

a wealth of new information. Summary data from many GWAS are now

publicly available, promoting the development of many statistical methods for

association studies based on GWAS summary statistics, which avoids the

increasing challenges associated with individual‐level genotype and phenotype

data sharing. However, for population‐based association studies such as

GWAS, it has been long recognized that population stratification can seriously

confound association results. For large GWAS, it is very likely that there

exist population stratification and cryptic relatedness, which will result in

inflated Type I error in association testing. Although many methods have been

developed to control for population stratification, only two of these approaches

can be used to control population stratification without individual‐level data:
one is based on genomic control (GC) and the other one is based on linkage

disequilibrium score regression (LDSC). However, the performance of these

two approaches is currently unknown. In this study, we use extensive

simulation studies including populations with subpopulations, spatially

structured populations, and populations with cryptic relatedness to compare

the performance of these two approaches to control for population

stratification using only GWAS summary statistics without individual‐level
data. Data sets from the genetic analysis workshop 19 and UK Biobank are also

used to evaluate these two approaches. We demonstrate that the intercept of

LDSC can be used as a more accurate correction factor than GC. The results

from this study will provide very useful information for researchers using

GWAS summary statistics while trying to control for population stratification.
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1 | INTRODUCTION

Over the past 16 years, genome‐wide association studies
(GWAS) have generated a wealth of new information.
Summary data from many GWAS are now publicly
available, promoting the development of many statistical

methods for association studies based on GWAS sum-
mary statistics, which avoids the increasing challenges
associated with individual‐level genotype and phenotype
data sharing. However, for population‐based association
studies, it has been long recognized that population
stratification can seriously confound association results
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(Knowler et al., 1988; Lander & Schork, 1994). For large
GWAS, it is very likely that there exist population
stratification and cryptic relatedness, which will result in
inflated Type I error in association testing. To correct the
inflation, many methods that use a set of genomic
markers genotyped in the same samples have been
developed to control for population stratification. These
methods include the genomic control (GC) approach
(Devlin & Roeder, 1999; Devlin et al., 2001; Reich &
Goldstein, 2001), linkage disequilibrium score regression
(LDSC) (Bulik‐Sullivan et al., 2015), principal component
(PC)‐based approaches (Chen et al., 2003; Price et al.,
2006; S. Zhang et al., 2003), approaches by dividing the
underlying population into several homogeneous sub-
populations and then constructing test statistics based on
homogeneous subpopulations (Pritchard, Stephens, &
Donnelly, 2000; Pritchard, Stephens, Rosenberg, et al.,
2000; S. Zhang & Zhao, 2001), mixed linear model ap-
proaches (Kang et al., 2010; Z. Zhang et al., 2010), and
approaches for rare variants association studies (Jiang
et al., 2013; Sha et al., 2016; Y. Zhang et al., 2013).

Although many methods have been developed to
control for population stratification, only two of these
approaches can be used to control for population
stratification without individual‐level data: one is based
on GC (Devlin & Roeder, 1999) and the other one is
based on LDSC (Bulik‐Sullivan et al., 2015). GC assumes
that only a small fraction of single‐nucleotide polymor-
phisms (SNPs) are associated with a trait, and no
association exists for other SNPs (Yang et al., 2011).
Under this assumption, GC corrects the inflation of test
statistics by dividing a correction factor. However, GC
fails to distinguish polygenicity (i.e., many small genetic
effects) from confounding bias based on that assumption
and polygenicity also contributes to the inflation of test
statistics (Bulik‐Sullivan et al., 2015). Furthermore, with
the evidence that the GC correction factor increases as a
sample size increases in the presence of polygenicity, GC
is too conservative and suffers a loss of power for large
samples (Devlin & Roeder, 1999; Yang et al., 2011).

The other approach to control for population
stratification without individual‐level data is based on
LDSC (Bulik‐Sullivan et al., 2015). As discussed by Bulik‐
Sullivan et al., the intercept of LDSC provides a more
robust quantification of inflation. In LDSC, the LD score
is constructed to measure the degree of trait‐associated
genetic variation tagged by an SNP. For a given trait,
SNPs with higher LD scores are more likely to tag causal
SNPs and thus have more inflated corresponding test
statistics. Besides, the inflation from cryptic relatedness
or population stratification is not correlated with LD
scores (Bulik‐Sullivan et al., 2015; Devlin & Roeder, 1999;
Voight & Pritchard, 2005; Yang et al., 2011). Based on

these two key evidences, LDSC associates χ2 statistics
with LD scores by a simple linear regression model and
the inflation caused by confounding is distributed to the
intercept. Therefore, LDSC can distinguish polygenicity
from confounding.

In fact, under the null hypothesis of GWAS, the
theoretical expectation of a χ2 test statistic is one for each
SNP. Then, if there is an inflation due to confounding or
other artifacts, the intercept of LDSC can measure the
contribution. In spite of this, as mentioned in Bulik‐
Sullivan et al. (2015), if there were a positive correlation
between LD score and Wright Fst (Bhatia et al., 2013), the
intercept of LDSC would underestimate the contribution
of population stratification to the inflation in χ2 statistics.

Although the intercept of LDSC plays a key role in
estimating the inflation, how to use the intercept to
control for population stratification and the perform-
ance of using the intercept as a correction factor are
unknown. In this paper, we consider two approaches to
control for population stratification using the intercept
of LDSC: (1) every χ2 statistic will be corrected by
minus the intercept (LD‐M); (2) similar to GC, let the
intercept be a correction factor, then every χ2 statistic
will be corrected by dividing the correction factor
(LD‐D). We use extensive simulations, including (1)
populations with k0 subpopulations; (2) spatially
structured populations; (3) populations with cryptic
relatedness, to compare LD‐M and LD‐D with GC and
evaluate the performance of these methods. We also
apply LD‐M, LD‐D, and GC to data sets from the
genetic analysis workshop 19 (GAW19) and UK
Biobank for further evaluations.

2 | METHODS

If an individual‐level genotype and phenotype data set is
available for a GWAS, we can use a score test statistic
to test the association between a trait and an SNP.
Suppose that there are a total of n individuals and J

SNPs in a GWAS. For the jth SNP, we let yi and xi
denote the trait and genotype for the ith individual,
where i n= 1, …, . The score test statistic is given by
T j U V( ) = /U
score

2 , where U y y x x= ( − ¯ )( − ¯ )i
n

i i=1 and

 V y y x x= ( − ¯) ( − ¯)
n i

n
i i

n
i

1
=1

2
=1

2. Under the null hypoth-

esis that the jth SNP is not associated with the trait, the
test statistic T j( )U

score asymptotically follows a χ2 distribu-
tion with one degree of freedom (df) (Sha et al., 2011). If
individual‐level genotype and phenotype data are not
available and only GWAS summary statistics are availa-
ble, we let Zj be the Z‐score for the jth SNP, then
T j Z( ) =U

jscore
2 for j J= 1, 2, …, .
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In GC (Devlin & Roeder, 1999), the inflation of
the score test statistic T j( )U

score for the jth SNP is

corrected by dividing the correction factor λ, where

( )λ median T T J= (1), …, ( ) /0.456U U
score score , the ratio of the

median of the observed test statistics and the median of
the χdf=1

2 distribution.

In LDSC (Bulik‐Sullivan et al., 2015), we first
calculate the LD score for the jth SNP by l r=j k jk

2 ,

where j J= 1, …, , k J= 1, …, , and r R= −jk jk

R

n
2 2 1−

− 2

jk
2

is

the squared correlation between SNP j and SNP k,
and Rjk

2 is the squared Pearson correlation between SNP j

and SNP k. Then, we obtain the score test statistic TUscore
for each SNP from a GWAS either using individual‐level
genotype and phenotype data or using summary statis-

tics. At last, by LDSC,






E T j l c βl( ) = + 1 +U
j jscore , we

can estimate the intercept c + 1.
Under different scenarios, we compare the following

four test statistics to control for population stratification:

(1) GC: T λ/U
score ; (2) LD‐D: ( )T c/ + 1U

score , the score test

statistic divided by the intercept in LDSC; (3) LD‐M:

( )T c− + 1U
score , the score test statistic minus the

intercept in LDSC; and (4) uncorrected: TUscore .

3 | RESULTS

3.1 | Simulation studies

To compare the performance of the above four methods,
we consider scenarios that confounding bias is due to
population stratification and cryptic relatedness. We use
the simulation procedures similar to the simulations in
Devlin and Roeder (1999) and Sha et al. (2016). For
scenarios where confounding bias is due to population
stratification, we consider both qualitative and quantitative
traits. To generate qualitative traits, we use a liability
threshold model with a 30% prevalence for the simulated
disease status and define cases and controls based on the
generated quantitative traits (case:control≈ 3:7). We con-
sider three sets of simulations: (1) populations with k0
subpopulations; (2) populations with spatially structured
populations; and (3) populations with cryptic relatedness.

3.1.1 | Simulation Set 1: Populations
with k0 subpopulations

In this simulation, we use the minor allele frequencies
(MAFs) of 24,487 SNPs from the GAW17. In GAW17, there
are 697 unrelated individuals. We follow the procedures of

Price et al. (2006) and Sha et al. (2016) to generate
genotypes of individuals in a population with k0 sub-
populations. For each SNP, we randomly choose a MAF
from 24,487 SNPs in GAW17 as the ancestral population
allele frequency p. Then, we independently draw k0 values
p p, …, k1 0

from the β‐distribution with parameters
p F F(1 − )/st st and p F F(1 − )(1 − )/ stst , where Fst is the
Wright measure of population subdivision (Balding &
Nichols, 1995) (in this study, F = 0.01st ). We accept
p p, …, k1 0

as allele frequencies for the k0 subpopulations

if ≥ p 0.002
k i

k
i

1
=1

0

0 ; otherwise, we redraw p p, …, k1 0
.

To generate quantitative traits, we use the model
y μ βx ε= + +ik k ik ik , where i n= 1, …, k , k k= 1, …, 0 ,
the number of individuals ⋯n n n= + + k1 0

, yik and xik
are the trait and genotype of the ith individual in the kth
subpopulation, and ε N~ (0, 1)ik . Under the null hypoth-
esis, we set β = 0. In this study, we consider n = 1000,
n n k k k= / ( = 1, …, )k 0 0 , k = 1, 5, 10, and 200 , μ = 01 ,
and ⋯μ μ μ k μ= = = = ( − 1)k2 3 00

. We set μ = 0.1 for
evaluating powers and μ = 0.3 for evaluating Type I
error rates.

3.1.2 | Simulation Set 2: Population with
spatially structured populations

To generate spatially structured populations, we follow the
simulation procedures inMathieson andMcVean (2012) and
Sha et al. (2016). We first divide the space into K K×0 0 grid
squares. Then, we start with the number of individuals and
their locations on the grid. Based on random genealogical
events, including the coalescence of two lineages and a
migration of a single lineage from one square to another, we
generate genotypes backwards in time. The relative rates of
coalescence and migration depend on the population‐scaled
migration rate M and the number and distribution of
lineages on the grid (Sha et al., 2016).

For n individuals, let ϕ i k h( ) = ( , ) if the ith

individual originates from grid square k h, , where
k K= 1, …, 0 and h K= 1, …, 0 . Denote the nongenetic
risk in grid square k h, by Rk h, . Then, under the null
hypothesis, the trait of the ith individual is generated by
y αR ε= +i ϕ i i( ) , where ε N~ (0, 1)i and α is a constant.
Under the alternative hypothesis, the trait for an
individual is generated by y βx y= + 0 , where y0 is the
trait generated under the null hypothesis.

In this study, we use n = 800, K = 200 , the
population‐scaled migration rate M = 0.01, and α = 2.
We generate genotypes for J = 1000 SNPs and there is
one causal SNP in the simulation of power. Spatially
structured populations can be analogized under three
scenarios for different values of Rk h, . Scenario 1: There is
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no population stratification with R = 0k h, for all k and h.
Scenario 2: There is a small and sharp spatial distribution
with R = 1k h, for k = 6, 7, 14, 15 and h = 6, 7, 14, 15,
and R = 0k h, for other k h, . Scenario 3: There is a
wide and smooth spatial distribution in which
R e= 0.4k h

k k h h
,

−(( − ) +( − ) )/180
2

0
2

and k h= = 60 0 .

3.1.3 | Simulation Set 3: Population with
cryptic relatedness

To generate a population with cryptic relatedness, we
follow the simulation procedures in Devlin and
Roeder (1999). In this simulation, we only consider a
balanced case–control study and assume that cases
and controls both have a fixed allelic correlation F1
and F2 , respectively.

To generate genotypes for the evaluation of Type
I error rates, we first draw a value of p from a
β‐distribution with parameters α β F F= = (1 − )/2st st ,
where F F=st 1 for cases and F F=st 2 for controls. Then,
we generate a binomial sample of two alleles with
parameter p to form the genotype. Under the null
hypothesis, we assume that F F F= =1 2 st , and we let
F = 0.00001, 0.0001, 0.001, and 0.01st in our simula-
tion studies. Considering the influence of the large
sample size, we generate genotypes at J = 1000 SNPs for
n= 1000, 5000, and 10,000.

In the simulation for power comparison, cases
are likely to be related compared with controls in a
randomly mating population as they share a genetic
disorder, so we let F = 0.00001, 0.001, and 0.0051 and
F = 0.00001 and 0.0012 . Under the alternative hypothesis,
we generate a binomial sample of two alleles with
parameter p γ γ= /(1+ ) to form the genotype at the
causal SNP for each of the cases; for noncausal SNPs in
cases, we use p drawn from a β‐distribution with
parameters α β F F= = (1 − )/21 1 . For controls, we use
p drawn from a β‐distribution with parameters
α β F F= = (1 − )/22 2 , and genotypes are generated under
the null hypothesis.

We generate genotypes at J = 1000 SNPs for n = 1000

individuals. We only consider one causal SNP in
the simulation of power. We use γ = 1.25, 1.35,

1.45, and 1.55 to generate the causal SNP in cases.

3.2 | Simulation results

3.2.1 | Type I error rates

To evaluate Type I error of the four methods, we consider
different types of traits, different sample sizes, and different

models. For each simulation set, we generate 1000
replicated samples. Each individual contains genotypes at
1000 SNPs and a phenotype. We consider 1000 replicated
samples and 1000 SNPs as 1000 × 1000 = 106 replicated
samples. For 106 replicated samples, the 95% confidence
interval (CI) of Type I error rates divided by nominal level
0.05 is (0.9915, 1.009). The Type I error rates beyond the
corresponding upper bound of 95% CIs are boldfaced in
Tables 1–3.

For simulation set 1, we consider a population with
k = 1, 5, 10, and 200 subpopulations. The Type I
error rates divided by the nominal level 0.05 of each
method are summarized in Table 1. For a quantitative
trait, we can find that when there is no subpopulation
(k = 10 ), all methods can control Type I error rates.
When subpopulations exist, the uncorrected test has
inflated Type I error rates, LD‐M can control Type I error
rate for k = 50 , but fail to control Type I error for more
subpopulations; LD‐D and GC both have correct Type I
error rates. For a qualitative trait, we can find similar
results, and the Type I error rate of the uncorrected test is
inflated even for a homogeneous population (k = 10 ).

For simulation set 2, we consider three scenarios of
spatially structured populations. The results of Type I error
rates are summarized in Table 2. For a quantitative trait,
we find that when there is no population stratification
(Scenario 1), all methods have correct Type I error rates;
but in the cases of population stratification (Scenarios 2
and 3), only LD‐D can control Type I error rates. For a
qualitative trait, only the uncorrected test cannot control
Type I error rates under any of the three scenarios.

For simulation set 3, we consider a balanced case‐
control study with different sample sizes. Type I error

TABLE 1 Type I error rates are divided by the nominal level
0.05 of uncorrected test, GC, LD‐D, and LD‐M for simulation set 1

Trait k0 Uncorrected GC LD‐D LD‐M

Quantitative 1 1.002 1.01 0.9936 0.5525

5 2.294 0.9814 0.9856 0.9736

10 2.935 0.9488 0.9789 1.536

20 2.767 0.9487 0.9836 1.459

Qualitative 1 1.059 0.7442 0.9307 0.4628

5 1.834 0.7739 0.8995 0.8844

10 2.314 0.7144 0.892 1.138

20 2.334 0.7261 0.8911 1.162

Note: Type I error rates in boldface indicate the values beyond the upper
bound of the 95% CIs.

Abbreviations: CI, confidence interval; GC, genomic control; LD‐D, every χ2

statistic will be corrected by dividing the intercept; LD‐M, every χ2 statistic
will be corrected by minus the intercept.
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rates of each method are summarized in Table 3. We find
that (1) LD‐D always has correct Type I error rates; (2)
GC has inflated Type I error rates when F = 0.0001st ; (3)
LD‐M only can control Type I error rate when Fst is
small; and (4) uncorrected test always has inflated Type 1
error rates.

3.2.2 | Powers

To evaluate the power of the four methods, we consider
1000 replicated samples. Each sample contains 1000
SNPs and a trait. We use a significant level of 0.05 in the
power comparison.

For simulation set 1 with a population including
k = 1, 5, 10, and 200 subpopulations, the powers of
each method are summarized in Figures 1 and 2 for a
quantitative trait and a qualitative trait, respectively.
For a quantitative trait, we can find that (1) when there
is only one subpopulation (k = 10 ), LD‐D, GC, and
uncorrected test have comparable powers, but LD‐M has
lower power; and (2) when there is more than one
subpopulation, the uncorrected test has the highest
power, but its Type I error rates are inflated; LD‐M is
more powerful than GC and LD‐D, but the Type I error
rates of LD‐M are also inflated; LD‐D is more powerful
than GC, although both of them can control Type I error
rates. For a qualitative trait, we can find similar results.

For simulation set 2, there are three scenarios of
spatially structured populations. From Figure 3, we find
that for a quantitative trait (1) when there is no population
stratification (Scenario 1), all of these four methods, GC,
LD‐D, LD‐M, and uncorrected test, have comparable
powers; and (2) for spatially structured populations with
a small and sharp spatial distribution or with a wide and
smooth spatial distribution (Scenarios 2 and 3), LD‐D has
the smallest power, but only LD‐D can control Type I error
rates in these cases. For the powers of a quantitative trait
shown in Figure 4, the uncorrected test and LD‐D have
higher powers when there is no population stratification
(Scenario 1); however, the Type I error rate of the
uncorrected test is inflated; LD‐M has the lowest power.
For the two scenarios of spatially structured populations
(Scenarios 2 and 3), although the uncorrected test has the
highest power, it cannot control Type I error rate; among
the three methods, LD‐M, LD‐D, and GC can control Type
I error rates, and LD‐M and LD‐D have higher power
than GC.

For simulation set 3, we compare the powers of each
method with the sample size n = 1000. From Figure 5,
we can find that (1) the powers of GC and LD‐D are
comparable; (2) LD‐M has higher powers than LD‐D and
GC, but it only can control Type I error rate when Fst is

TABLE 2 Type I error rates divided
by the nominal level 0.05 of uncorrected
test, GC, LD‐D, and LD‐M for simulation
set 2

Trait Scenario Uncorrected GC LD‐D LD‐M

Quantitative 1 1.004 0.9998 0.9956 0.5516

2 2.475 1.404 1.008 1.406

3 1.974 1.156 1.002 1.113

Qualitative 1 1.217 0.5119 0.9529 0.3286

2 2.056 0.6668 0.8263 0.8617

3 1.829 0.66 0.8014 0.6798

Note: Type I error rates in boldface indicate the values beyond the upper bounds of the 95% CIs.

Abbreviations: CI, confidence interval; GC, genomic control; LD‐D, every χ2 statistic will be corrected by
dividing the intercept; LD‐M, every χ2 statistic will be corrected by minus the intercept.

TABLE 3 Type I error rates divided by the nominal level 0.05
of uncorrected test, GC, LD‐D, and LD‐M for simulation set 3

n Fst Uncorrected GC LD‐D LD‐M

1000 0.00001 1.022 1.007 0.9992 0.566

1000 0.0001 1.232 1.01 0.9976 0.6812

1000 0.001 3.314 0.997 0.9967 1.74

1000 0.01 11.14 0.9491 0.9846 4.952

5000 0.00001 1.118 1.003 0.9965 0.6152

5000 0.0001 2.198 1.008 0.9952 1.182

5000 0.001 8.479 1.002 0.998 4.012

5000 0.01 15.7 0.9416 0.9765 6.068

10,000 0.00001 1.231 1.006 0.9948 0.6772

10,000 0.0001 3.318 1.02 0.9999 1.755

10,000 0.001 11.08 1.009 0.9944 4.918

10,000 0.01 16.93 0.9523 0.9793 6.235

Note: Type I error rates in boldface indicate the values beyond the upper
bounds of the 95% CIs.

Abbreviations: CI, confidence interval; GC, genomic control; LD‐D, every χ2

statistic will be corrected by dividing the intercept; LD‐M, every χ2 statistic
will be corrected by minus the intercept.
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small; and (3) the power of the uncorrected test is always
the highest, but its Type I error rates are inflated.

In summary, (1) LD‐D can control Type I error rates
for all simulation scenarios and it is also more powerful
than GC; (2) GC cannot control Type I error rates under
some simulation scenarios; (3) LD‐M cannot control
Type I error rates for more simulation scenarios than GC;
and (4) uncorrected test cannot control Type I error rates
for all simulation scenarios that have population
stratifications or cryptic relatedness, although it has the
largest power.

3.3 | Real data analysis

3.3.1 | Application to GAW19

The first data set we use to conduct our analyses is
a combination of true genotypes and simulated

hypertension phenotypes across 849 Mexican‐American
individuals who are part of 20 separate pedigrees and
provided as part of the GAW19. This data set is based on
the family‐based design with related individuals. In this
data set, there are two related phenotypes, systolic blood
pressure and diastolic blood pressure (DBP) at three time
points, with 200 replicates. We consider the average of
DBP at three time points as the phenotype of interest in
our analyses (Zhu et al., 2016).

To evaluate the performance of these four methods,
uncorrected, LD‐M, LD‐D, and GC, under the scenario of
cryptic relatedness in real data sets, we evaluate type I
error rates of these methods based on four SNP sets
obtained from the data set of GAW19. We first randomly
select 1000, 5000, 10,000, and 15,000 SNPs on chromo-
some 15 that are far away from the simulated functional
loci for DBP as four SNP sets. For each of the SNP sets
(1000, 5000, 10,000, and 15,000), we apply the four
methods to each of the 200 phenotypes and each SNP in

FIGURE 1 Power comparisons of GC, LD‐D, LD‐M, and uncorrected test in the simulation set 1 for a quantitative trait with
Heritability = 0.004, 0.008, 0.012, and 0.016. GC, genomic control; LD‐D, every χ2 statistic will be corrected by dividing the intercept;
LD‐M, every χ2 statistic will be corrected by minus the intercept.
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FIGURE 2 Power comparisons of GC, LD‐D, LD‐M, and uncorrected test in the simulation set 1 for a qualitative trait with
Heritability = 0.004, 0.008, 0.012, and 0.016. GC, genomic control; LD‐D, every χ2 statistic will be corrected by dividing the intercept;
LD‐M, every χ2 statistic will be corrected by minus the intercept.

FIGURE 3 Power comparisons of GC, LD‐D, LD‐M, and uncorrected test in the simulation set 2 for a quantitative trait with
Heritability = 0.01, 0.02, 0.03, and 0.04. GC, genomic control; LD‐D, every χ2 statistic will be corrected by dividing the intercept; LD‐M,
every χ2 statistic will be corrected by minus the intercept.
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FIGURE 4 Power comparisons of GC, LD‐D, LD‐M, and uncorrected test in the simulation set 2 for a qualitative trait with
Heritability = 0.005, 0.01, 0.015, and 0.02. GC, genomic control; LD‐D, every χ2 statistic will be corrected by dividing the intercept; LD‐M,
every χ2 statistic will be corrected by minus the intercept.

FIGURE 5 Power comparisons of GC, LD‐D, LD‐M, and uncorrected test in the simulation set 3 for a balanced case–control study with
γ = 1.25, 1.35, 1.45, and 1.55 and n = 1000. GC, genomic control; LD‐D, every χ2 statistic will be corrected by dividing the intercept; LD‐
M, every χ2 statistic will be corrected by minus the intercept.
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an SNP set. For each SNP set, we consider 200 replicated
phenotypes and SNPs in the SNP set as replicated
samples to calculate the Type I error rate of each
method. Table 4 summarizes the Type I error rates
divided by the nominal level 0.05 of each method for
each SNP set. From this table, we can see that
uncorrected has inflated Type I error rates; the two
methods to adjust for population stratification, LD‐M and
GC, still have inflated Type I error rates, and only LD‐D
can control Type I error rates.

3.3.2 | Application to UK Biobank GWAS
of BMI

We also assess the performance of uncorrected, GC,
LD‐M, and LD‐D using the UK Biobank data. Previous
studies have highlighted that population structure within
the United Kingdom is rather limited, but it occurs at
a fine scale (e.g., birth location) on North–South and
East–West clines (The Wellcome Trust Case Control
Consortium, 2007; O'Dushlaine et al., 2010). Cook et al.
(2020) have demonstrated that there is substantial
inflation in GWAS with birth location and body mass
index (BMI) is genetically correlated with birth location.
At the same time, the fine‐scale population structure in
the UK Biobank GWAS of BMI cannot be fully accounted
for by adjusting PCs (Cook et al., 2020).

To compare the performance of uncorrected, GC,
LD‐M, and LD‐D for unrelated samples with fine‐scale
population structure, we utilize published association
summary statistics for BMI available from Neale Lab.
Full details of the quality control, phenotype derivation, and
association analyses can be found at: https://www.nealelab.
is/uk-biobank. The results of the GWAS are available for
359,983 unrelated individuals with European ancestry.
There are 13,362,638 SNPs without missing information
on chromosomes 1–22. With GWAS significance threshold

5 × 10−8, there are a total of 50,839 significant SNPs that are
associated with BMI, which are summarized in Figure 6.
Using GWAS summary statistics, we calculate the χ2

statistics based on the Z‐scores. GC inflation factor can be
obtained based on all χ2 statistics, which is 2.17. We also
used LD scores computed from 1000 Genomes Project of the
European sample, which is available from https://data.
broadinstitute.org/alkesgroup/LDSCORE. The LDSC inter-
cept is obtained based on 1,285,620 SNPs shared by both
data sets, which is 1.25.

Based on Figure 6, we can see that chromosome 21 has
the fewest significant SNPs and the smallest proportion of
significant variants; therefore, we consider SNPs in
chromosome 21 with p> 0.005 as noncausal SNPs. There
are a total 172,534 noncausal SNPs. We randomly select
1000, 2000, and 3000 noncausal SNPs with 1000 replicates,
and then we evaluate the Type I error rates of the four
methods at a nominal significance level 0.05. The Type I
error rates of the four methods are summarized in Table 5.
From this table, we can see that only LD‐D can control
Type I error rates under all scenarios; uncorrected has
inflated Type I error rates; GC and LD‐M can control Type

TABLE 4 Type I error rates divided by the nominal level 0.05
of uncorrected, GC, LD‐D, and LD‐M for the data set from GAW19

# of SNPs Uncorrected GC LD‐D LD‐M

1000 2.142 1.095 1.016 1.175

5000 2.053 1.075 0.992 1.119

10,000 2.05 1.069 0.9902 1.118

15,000 2.056 1.039 0.989 1.114

Note: Type I error rates in boldface indicate the values beyond the
corresponding upper bound of the 95% CI divided by the nominal level 0.05.

Abbreviations: # of SNPs, number of SNPs sampled from noncausal SNPs;
CI, confidence interval; GC, genomic control; LD‐D, every χ2 statistic will be
corrected by dividing the intercept; LD‐M, every χ2 statistic will be corrected
by minus the intercept.

FIGURE 6 Summary of the significant SNPs associated with
BMI in the UK Biobank. The x‐axis represents the chromosome; the
left y‐axis is the number of significant SNPs; the right y‐axis is the
proportion of significant SNPs for each chromosome. BMI, body
mass index; SNP, single‐nucleotide polymorphism.

TABLE 5 Type I error rates divided by the nominal level 0.05
of uncorrected test, GC, LD‐D, and LD‐M for noncausal SNPs in
UK Biobank

# of SNPs Uncorrected GC LD‐D LD‐M

1000 1.6679 0.0735 0.9919 0.8577

2000 1.6806 0.0712 0.9968 0.8631

3000 1.6820 0.0730 0.9974 0.8633

Note: Type I error rates in boldface indicate the values beyond the
corresponding 95% CI divided by the nominal level 0.05.

Abbreviations: # of SNPs, number of SNPs sampled from noncausal SNPs;
CI, confidence interval; GC, genomic control; LD‐D, every χ2 statistic will be
corrected by dividing the intercept; LD‐M, every χ2 statistic will be corrected
by minus the intercept.
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I error rates, but are conservative; and GC is much more
conservative compared with LD‐M.

4 | DISCUSSION

For the development of statistical methods for associa-
tion studies based on large sample GWAS summary
statistics, it is not always feasible to do comprehensive
quality control and correct for confounding biases
without individual‐level genotype and phenotype data.
Typically, GC is a practicable method despite its
limitations. On the other hand, the studies of LDSC
have shown that the intercept of LDSC could provide a
more robust inflation estimation than GCs. To explore
how to use the intercept of LDSC to control for
population stratification in genetic association studies,
two methods, LD‐D and LD‐M, were investigated in this
paper. We used three different simulation sets and
applications to real data sets from GAW19 and UK
Biobank to evaluate the performance of LD‐D and LD‐M
with GC. In conclusion, LD‐D has correct Type I error
rates in all simulation scenarios and in the applications
to the real data sets, which is proved to be a more reliable
and accurate correction method than GC. LD‐M and GC
cannot control Type I error rates in some scenarios.

In the previous LDSC paper (Bulik‐Sullivan et al.,
2015), a potential limitation of LDSC was shown when
variance explained per SNP may be correlated with LD
score for some phenotypes, which result in the under-
estimation of confounding contributions estimated by the
intercept of LDSC. Particularly, LD‐M can control Type I
error rates in the situation of spatially structured
populations for unbalanced case–control studies indicat-
ing that the underestimation is due to the correlation
between LD score and Wright Fst (Bulik‐Sullivan et al.,
2015). However, Lee et al. (2018) showed that dividing
the intercept of LDSC is still a viable means of correcting
confounding even in those cases, which is in accordance
with the performance of LD‐D. In conclusion, LD‐D is a
more reliable and stronger tool for controlling confound-
ing bias in association studies than GC and LD‐M.

AUTHOR CONTRIBUTIONS
Shuanglin Zhang and Qiuying Sha designed the research:
Shijia Yan and Shuanglin Zhang performed the statistical
analysis: and Shijia Yan, Qiuying Sha, and Shuanglin
Zhang wrote the manuscript.

ACKNOWLEDGMENTS
The Genetic Analysis Workshops are supported by the
National Institutes of Health (NIH) Grant R01 GM031575

from the National Institute of General Medical Sciences.
The preparation of GAW 17 data was supported, in part,
by NIH R01 MH059490 and used data from the 1000
Genomes Project (www.1000genomes.org). The GAW19
whole‐genome sequence data were provided by the
T2D‐GENES (Type 2 Diabetes Genetic Exploration by
Next‐generation sequencing in Ethnic Samples) Consor-
tium, which is supported by NIH Grants U01 DK085524,
U01 DK085584, U01 DK085501, U01 DK085526, and U01
DK085545. The other genetic and phenotypic data for
GAW19 were provided by the San Antonio Family Heart
Study and San Antonio Family Diabetes/Gallbladder
Study, which are supported by NIH Grants P01
HL045222, R01 DK047482, and R01 DK053889.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are
available from the corresponding author upon reasonable
request.

ORCID
Qiuying Sha http://orcid.org/0000-0002-9342-3269
Shuanglin Zhang http://orcid.org/0000-0002-
9478-1199

REFERENCES
Balding, D. J., & Nichols, R. A. (1995). A method for quantifying

differentiation between populations at multi‐allelic loci and its
implications for investigating identity and paternity. Genetica,
96(1–2), 3–12.

Bhatia, G., Patterson, N., Sankararaman, S., & Price, A. L. (2013).
Estimating and interpreting FST: The impact of rare variants.
Genome Research, 23(9), 1514–1521.

Bulik‐Sullivan, B. K., Loh, P.‐R., Finucane, H. K., Ripke, S.,
Yang, J., Schizophrenia Working Group of the Psychiatric
Genomics Consortium, Patterson, N., Price, A. L., &
Neale, B. M. (2015). LD score regression distinguishes
confounding from polygenicity in genome‐wide association
studies. Nature Genetics, 47(3), 291–295.

Chen, H. S., Zhu, X., Zhao, H., & Zhang, S. (2003). Qualitative
semi‐parametric test for genetic associations in case–control
designs under structured populations. Annals of Human
Genetics, 67(3), 250–264.

Cook, J. P., Mahajan, A., & Morris, A. P. (2020). Fine‐scale
population structure in the UK Biobank: Implications for
genome‐wide association studies. Human Molecular Genetics,
29(16), 2803–2811.

Devlin, B., & Roeder, K. (1999). Genomic control for association
studies. Biometrics, 55(4), 997–1004.

Devlin, B., Roeder, K., & Wasserman, L. (2001). Genomic control, a
new approach to genetic‐based association studies. Theoretical
Population Biology, 60(3), 155–166.

YAN ET AL | 613

http://www.1000genomes.org
http://orcid.org/0000-0002-9342-3269
http://orcid.org/0000-0002-9478-1199
http://orcid.org/0000-0002-9478-1199


Jiang, Y., Epstein, M. P., & Conneely, K. N. (2013). Assessing the
impact of population stratification on association studies of
rare variation. Human Heredity, 76(1), 28–35.

Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S.‐y,
Freimer, N. B., & Sabatti, C. (2010). Variance component
model to account for sample structure in genome‐wide
association studies. Nature Genetics, 42(4), 348–354.

Knowler, W. C., Williams, R. C., Pettitt, D. J., & Steinberg, A. G.
(1988). Gm3;5,13,14 and type 2 diabetes mellitus: An
association in American Indians with genetic admixture.
American Journal of Human Genetics, 43, 520–526.

Lander, E. S., & Schork, N. J. (1994). Genetic dissection of complex
traits. Science, 265, 2037–2048.

Lee, J. J., McGue, M., Iacono, W. G., & Chow, C. C. (2018). The
accuracy of LD score regression as an estimator of confound-
ing and genetic correlations in genome‐wide association
studies. Genetic Epidemiology, 42(8), 783–795.

Mathieson, I., & McVean, G. (2012). Differential confounding of
rare and common variants in spatially structured populations.
Nature Genetics, 44(3), 243–246.

O'Dushlaine, C. T., Morris, D., Moskvina, V., Kirov, G.,
International Schizophrenia Consortium, Gill, M., Corvin, A., &
Cavalleri, G. L. (2010). Population structure and genome‐wide
patterns of variation in Ireland and Britain. European Journal of
Human Genetics, 18(11), 1248–1254.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E.,
Shadick, N. A., & Reich, D. (2006). Principal components
analysis corrects for stratification in genome‐wide association
studies. Nature Genetics, 38(8), 904–909.

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of
population structure using multilocus genotype data. Genetics,
155(2), 945–959.

Pritchard, J. K., Stephens, M., Rosenberg, N. A., & Donnelly, P.
(2000). Association mapping in structured populations. The
American Journal of Human Genetics, 67(1), 170–181.

Reich, D. E., & Goldstein, D. B. (2001). Detecting association in a
case–control study while correcting for population stratifica-
tion. Genetic Epidemiology: The Official Publication of the
International Genetic Epidemiology Society, 20(1), 4–16.

Sha, Q., Zhang, Z., & Zhang, S. (2011). An improved score test for
genetic association studies. Genetic Epidemiology, 35(5), 350–359.

Sha, Q., Zhang, K., & Zhang, S. (2016). A nonparametric regression
approach to control for population stratification in rare variant
association studies. Scientific Reports, 6, 37444.

The Wellcome Trust Case Control Consortium. (2007). Genome‐
wide association study of 14,000 cases of seven common
diseases and 3,000 shared controls. Nature, 447(7145),
661–678.

Voight, B. F., & Pritchard, J. K. (2005). Confounding from cryptic
relatedness in case–control association studies. PLoS Genetics,
1(3), e32.

Yang, J., Weedon, M. N., Purcell, S., Lettre, G., Estrada, K.,
Willer, C. J., Smith, A. V., O'Connell, J. R., Mangino, M.,
Mägi, R., Madden, P. A., Heath, A. C., Nyholt, D. R.,
Martin, N. G., Montgomery, G. W., Frayling, T. M.,
Hirschhorn, J. N., McCarthy, M. I., Goddard, M. E., &
Visscher, P. M., GIANT Consortium. (2011). Genomic
inflation factors under polygenic inheritance. European
Journal of Human Genetics, 19(7), 807–812.

Zhang, S., & Zhao, H. (2001). Quantitative similarity‐based
association tests using population samples. The American
Journal of Human Genetics, 69(3), 601–614.

Zhang, S., Zhu, X., & Zhao, H. (2003). On a semiparametric test to
detect associations between quantitative traits and candidate
genes using unrelated individuals. Genetic Epidemiology: The
Official Publication of the International Genetic Epidemiology
Society, 24(1), 44–56.

Zhang, Y., Guan, W., & Pan, W. (2013). Adjustment for population
stratification via principal components in association analysis
of rare variants. Genetic Epidemiology, 37(1), 99–109.

Zhang, Z., Ersoz, E., Lai, C.‐Q., Todhunter, R. J., Tiwari, H. K.,
Gore, M. A., Bradbury, P. J., Arnett, D. K., Ordovas, J. M., &
Buckler, E. S. (2010). Mixed linear model approach adapted
for genome‐wide association studies. Nature Genetics, 42(4),
355–360.

Zhu, H., Wang, Z., Wang, X., & Sha, Q. (2016). A novel statistical
method for rare‐variant association studies in general pedi-
grees. BMC Proceedings, 10(Suppl 7), 22.

How to cite this article: Yan, S., Sha, Q., &
Zhang, S. (2022). Control for population
stratification in genetic association studies based
on GWAS summary statistics. Genetic
Epidemiology, 46, 604–614.
https://doi.org/10.1002/gepi.22493

614 | YAN ET AL

https://doi.org/10.1002/gepi.22493



